15 research outputs found

    MCSTHAR++, a Monte Carlo code for the microcanonical hadronization

    Get PDF
    MCSTHAR++ is a new Monte Carlo code implementing the Statistical Hadronization Model. This model assumes that hadronization proceeds through the microcanonical decay of massive extended clusters. Unlike other hadronization models, in this approach very few free parameters are needed, as has been demonstrated in previous studies. The tuning of the model and the comparison with the data is ongoing.Comment: 3 pages; To appear in the proceedings of the conference IFAE 2010, Roma, Italy, 7-9 April 201

    A Monte-Carlo generator for statistical hadronization in high energy e+e- collisions

    Get PDF
    We present a Monte-Carlo implementation of the Statistical Hadronization Model in e+e- collisions. The physical scheme is based on the statistical hadronization of massive clusters produced by the event generator Herwig within the microcanonical ensemble. We present a preliminary comparison of several observables with measurements in e+e- collisions at the Z peak. Although a fine tuning of the model parameters is not carried out, a general good agreement between its predictions and data is found.Comment: 19 pages, 28 figures, 6 tables. v2: added sections on comparison between the Statistical Hadronization Model and the Cluster Model and on the interplay between Herwig cluster splitting algorithm and Statistical Hadronization Model predictions. Fixed typos and references added. Version accepted for publication in EPJ

    The ideal relativistic spinning gas: polarization and spectra

    Full text link
    We study the physics of the ideal relativistic rotating gas at thermodynamical equilibrium and provide analytical expressions of the momentum spectra and polarization vector for the case of massive particles with spin 1/2 and 1. We show that the finite angular momentum J entails an anisotropy in momentum spectra, with particles emitted orthogonally to J having, on average, a larger momentum than along its direction. Unlike in the non-relativistic case, the proper polarization vector turns out not to be aligned with the total angular momentum with a non-trivial momentum dependence.Comment: Final published version. Minor corrections to formula

    The effects of angular momentum conservation in relativistic heavy ion collisions

    Get PDF
    The effects of angular momentum conservation in peripheral heavy ion collisions at very high energy are investigated. If a sufficiently large fraction of the initial angular momentum of the interaction region is converted into intrinsic angular momentum, the azimuthal anisotropy (elliptic flow) gets enhanced and the transverse momentum spectra turn out to be further broadened. A distinctive signature of the existence of spinning subregions in the plasma is the generation of a net polarization of the emitted hadrons with peculiar kinematical features. These phenomena might be possibly observed at LHC, where the initial angular momentum of the colliding ions will be about a factor 30 larger than at RHIC

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Measurement of D*±, D± and Ds± meson production cross sections in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The production of D∗±, D± and D±s charmed mesons has been measured with the ATLAS detector in pp collisions at √s= 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb−1. The charmed mesons have been reconstructed in the range of transverse momentum 3.5 <pT(D) <100 GeV and pseudorapidity |η(D)| <2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D∗± and D± production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange D mesons produced in a vector state, and the total cross section of charm production at √s= 7 TeV were derived

    Correlating Strangeness Enhancement and J/psi Suppression in Heavy Ion Collisions at sNN\sqrt{s_NN} = 17.2 GeV

    No full text
    It is shown that the strangeness enhancement and the J/psi anomalous suppression patterns observed in heavy ion collisions at top SPS energy, sqrt(s)_NN = 17.2 GeV, exhibit an interesting correlation if studied as a function of the transverse size of the interaction region. The onset of both phenomena seems to occur when the size exceeds \approx 4 fm. Strangeness enhancement is defined in terms of the strangeness undersaturation factor gamma_S and J/psi anomalous suppression in terms of the deviation from the absorption expected in a purely hadronic scenario
    corecore